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▪ The self-extracting cyclotron:

▪ The principle of self-extraction

▪ The prototype

▪ The improvements of the design (InnovaTron project, EU-H2020-MSCA)

▪ Self-consistent simulation of the space charge dominated beam in the
central region:

▪ Scala simulations 

▪ Tosca simulations

▪ Bunch formation with space charge

▪ Full beam tracking with space charge

▪ Optimization of cyclotron settings

▪ Summary 2
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▪ In most cyclotrons, the pole gap usually is large.

▪ An extraction system is needed to transfer the
beam from the isochronous region to the radial
unstable region where the beam can exit.

▪ Self-extraction: fast transition between both
regions such that the radial unstable zone
can be reached by acceleration without an
extraction device.

▪ Unconventional extraction method: special
shaping of the cyclotron magnetic field and the
use of harmonic coils to increase the turn
separation in the extraction process.

▪ A prototype was built and tested by IBA around
2000.

3

The principle of self-extraction

The self-extracting cyclotron.
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▪ The pole gap decreases quasi-elliptically with
radius.

▪ The pole on which the beam is extracted is
radially longer than the other ones.

▪ A groove is machined in the long pole, that acts
like a kind of “septum” and provides optics for
the extracted beam.

▪ Harmonic coils are used to enhance turn
separation at extraction.

▪ A permanent magnet gradient corrector is
placed at extraction to provide radial and
vertical focusing to the diverging beam.

▪ A beam stop (beam separator) intercepts small
fractions of the beam that are not properly
extracted.

4

The prototype (2001)

(a)

(b)

(c)

(d)

(e)

The self-extracting cyclotron 
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▪ Acceleration of protons at 14 MeV.

▪ Self-extraction was successfully proven by
extracting a current up to 2 mA.

▪ Extraction efficiency was about 80% at low
currents and 70-75% at high currents

▪ This drop was partly due to an increase
of the dee-voltage ripple resulting from the
noisy PIG-source and beam-loading.

▪ Not so good beam quality too much
activation of the cyclotron/beamline.

▪ Encouraging results but there was room for
improvement for high-intensity industrial
applications.

5

The prototype (2001)
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MAGNET OPTIMIZATION

▪ The new design has 2-fold symmetry and can
work with 2 internal PIG sources.

▪ The groove in the longer pole is replaced by a
step-like shape (plateau).

• This lowers the strong magnetic sextupole
component in the extraction path and
thereby substantially enhances the quality
of the extracted beam.

▪ The quasi-elliptical gap is no longer constant
along circles but constant along equilibrium
orbits.

• This provides a sharper transition towards
extraction and therefore enhances the
extraction efficiency.

▪ A new gradient corrector has been designed to
provide radial focusing to the extracted beam.

6

InnovaTron project (EU-H2020-MSCA programme)

(a)

(c)

(b)

(d)

(e) (f)
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Simulation of space charge dominated beam in the central region

▪ In high-intensity cyclotrons with internal ion source, understanding beam dynamics under space
charge will contribute to an optimum design.

▪ A quantitative self-consistent approach is needed for accurate simulation of the beam extracted
from the internal ion source and accelerated under space charge conditions.

▪ Our approach consists of three steps:

1. SCALA simulations:

Solve a SCALA model of the first accelerating gap to find the meniscus shape and beam
phase space on it.

2. TOSCA simulations:

Fit the meniscus and beam phase space on it and solve a TOSCA model of the central
region. Here the meniscus surface is put at 0 V. This provides the 3D electric field map
everywhere in the central region, including the source-puller gap.

3. Bunch formation in the first accelerating gap and 3D full beam tracking including
space charge
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Step 1: Scala simulations
Solve a SCALA model of the first accelerating gap to find the meniscus shape and beam phase space on it

▪ The plasma free-surface module of SCALA is used.

▪ SCALA does not simulate the plasma itself.

▪ Beamlets are emitted from a surface and extracted by an electrostatic field.

▪ We only need to model the local geometry of the source-puller gap.

Emitter surface

Chimney

Puller
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▪ The meniscus is determined by the Child-Langmuir condition: the external electric

field on the surface is cancelled by the space charge electric field.

▪ The meniscus is found in an iterative process.

▪ We assume that the meniscus shape and position can be found by solving the
problem for the rms-value of the gap-voltage.

- The electric field in a cyclotron central region is not DC but RF.

- The RF frequency is so high that the meniscus will move only weakly in the RF
electric field:

with vB = 
𝑘𝑇

𝑒

𝑚𝑝
(Bohm’s velocity), kTe ≈ 10 eV, fRF = 70 MHz

s = 𝑣𝐵
𝑇

4
=

𝑘𝑇
𝑒

𝑚𝑝

1

4 𝑓𝑅𝐹
≈ 0.1 𝑚𝑚

Step 1: Scala simulations
Solve a SCALA model of the first accelerating gap to find the meniscus shape and beam phase space on it
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Step 1: Scala simulations
Solve a SCALA model of the first accelerating gap to find the meniscus shape and beam phase space on it

▪ Input parameters:

▪ dee-voltage 𝑉𝑑𝑒𝑒

▪ emitter current density 𝐽𝑒𝑚𝑖𝑡

▪ electron temperature 𝑇𝑒

▪ meniscus voltage 𝑉𝑚

Less critical

Less critical

𝑉𝑑𝑒𝑒 = 42.1 kV

𝐽𝑒𝑚𝑖𝑡 = 0.4 A/cm2

Iext = 100 mA

𝑉𝑑𝑒𝑒 = 9.5 kV

𝐽𝑒𝑚𝑖𝑡 = 0.4 A/cm2

Iext = 36.4 mA

𝑉𝑑𝑒𝑒 = 38.9 kV

𝐽𝑒𝑚𝑖𝑡 = 0.2 A/cm2

Iext = 67.4 mA

𝑉𝑑𝑒𝑒 = 38.9 kV

𝐽𝑒𝑚𝑖𝑡 = 2 A/cm2

Iext = 222 mA

DC extracted current
Meniscus position

Meniscus position = distance

between the extreme

meniscus x-coordinate and the

intersection between x-axis

and plasma chamber cylinder.

Beam
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Step 2: Tosca simulations
Fit the meniscus and beam phase space on it and solve a TOSCA model of the cyclotron central region

▪ We extract particle position coordinates, velocity components and beamlet current at the
meniscus intersection from the beamlets calculated by SCALA.

▪ We fit 𝑥, 𝑦′, 𝑧′ and the beamlet current as a function of 𝑦 and 𝑧.

▪ We use a double polynomial fit up to order 7 (the sum of 𝑦 and 𝑧 exponents) and consider the
symmetry of the model.

▪ The representation also allows to create a file with particle starting conditions for tracking.

𝑥 𝑦, 𝑧 = ෍

𝑛=0

3

෍

𝑚=0

3

𝑎𝑛𝑚 𝑦2𝑛 𝑧2𝑛

𝑦′ 𝑦, 𝑧 = 𝑦 ෍

𝑛=0

3

෍

𝑚=0

3

𝑏𝑛𝑚 𝑦2𝑛 𝑧2𝑚

𝑧′ 𝑦, 𝑧 = 𝑧෍

𝑛=0

3

෍

𝑚=0

3

𝑐𝑛𝑚 𝑦2𝑛 𝑧2𝑚
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Green:  𝑉𝑑𝑒𝑒 = 38.9 kV, 𝐽𝑒𝑚𝑖𝑡 = 0.4 A/cm2

Blue:    𝑉𝑑𝑒𝑒 =18.8 kV, 𝐽𝑒𝑚𝑖𝑡 = 0.4 A/cm2

Red:     𝑉𝑑𝑒𝑒 = 38.9 kV, 𝐽𝑒𝑚𝑖𝑡 = 2 A/cm2

Step 2: Tosca simulations
Fit the meniscus and beam phase space on it and solve a TOSCA model of the central region

▪ The meniscus surface is modelled in

OPERA as a wire-edge structure with a

triangular mesh.

▪ The TOSCA model of the central region is

solved by putting the meniscus surface at

ground potential.
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Step 2: Tosca simulations – Electric field in the source-puller gap

▪ The electric field drops quickly in the space
in between the meniscus and the chimney
slit (𝑥 < 𝑥𝑠𝑙𝑖𝑡).

▪ The chimney aperture acts like a sort of
“Faraday cage” that screens the electric
field.

▪ Particles must leave early from the meniscus
surface in order to be able to cross the gap.

▪ Later starting phases are not properly
accelerated by the central region.

▪ The best case in the figure is (d): higher
energy gain and smaller energy spread. A
phase range of about 40° can be accepted
and accelerated.
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Step 3: Bunch formation with space charge in the first gap 

▪ The beam tracking starts from the meniscus.

▪ Particle starting conditions are created with 𝑦 and 𝑧 generated randomly and the other 
variables (𝑥, 𝑦′, 𝑧′) calculated from the fits.

▪ The user specifies the wished RF phase width of the bunch and number of time-steps 
that are needed to complete the bunch formation.

▪ The bunch will be sliced according to the number of time-steps. 

▪ For each new step, the bunch is re-defined by adding the additional slice and then 
advanced with updated space charge self-field.

▪ After completion, the tracking proceeds at full space charge of the bunch.
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3D full beam tracking including space charge

▪ The central region was optimized to obtain good beam
centering, vertical focusing and RF phase-width
selection of 40°.

▪ Starting beam:

▪We used a SCALA solution that provided 100 mA
on the meniscus (𝐽𝑒𝑚𝑖𝑡=0.4 A/cm2 )

▪ 100000 particles were sampled in a RF phase
range of 180° covering the full acceleration period
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3D full beam tracking including space charge

▪ Number of turns equal to 25

▪ Beam centroid off-centering < 3 mm

▪ Only 1.7% (1.7 mA) is captured for acceleration

▪ Only particles in the phase range between -180° and -140°
are accepted.

▪ High losses in the first two turns:

▪ about 88.7% on the chimney+puller+puller collimators

▪ about 5.8% in the phase selecting collimators

▪ about 3.9% vertically on the dees and dummy dees

▪ Losses due to the unfavorable transit time factor and
strong horizontal over-focusing at the chimney exit

▪ No losses after two turns
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3D full beam tracking including space charge

Shape of the accelerated bunches by

their projection on the xy-plane,

followed during 25 turns at moments

when the RF phase equals zero

″Earlier″ simulation:

▪ Bunch started just beyond the

source-puller gap

▪ Average beam current of 5 mA

▪ Horizontal and vertical emittances

of about 20 𝜋 mm-mrad (1𝜎)

▪ Total bunch length of about 3 mm

(corresponding to 30° RF width)

▪ The vortex motion seems to be

observed
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Optimization of cyclotron settings

▪ Extracted beam optimization is a long and difficult process
as it depends on multiple parameters and requires full
beam tracking from the ion source up to the cyclotron exit.

▪ An optimization program was written to optimize cyclotron
settings (such as harmonic coils, Vdee) that maximize the
extraction efficiency.

▪ The program uses standard optimization routines to
optimize a task (project).

▪ The code has been tested (without space charge) for a
beam of 2000 particles, tracked from the ion source
position up to extraction.

▪ We found an extraction efficiency of 91% with 7.7% losses
on the first beam separator and 1.3% of particles extracted
towards the 2nd exit port.
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Summary

▪ The magnet of the self-extracting cyclotron has been improved within the InnovaTron
project (2-years EU-H2020-MSCA project ended last July).

▪ An effort has been made to more accurately simulate the bunch formation in the first
accelerating gap under space charge conditions for a cyclotron with internal ion source.

▪ More studies are needed to further improve space charge simulations in the cyclotron
central region.

▪ A software-tool was developed, that optimizes the cyclotron settings for obtaining
highest extraction efficiency.
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Thank you


