

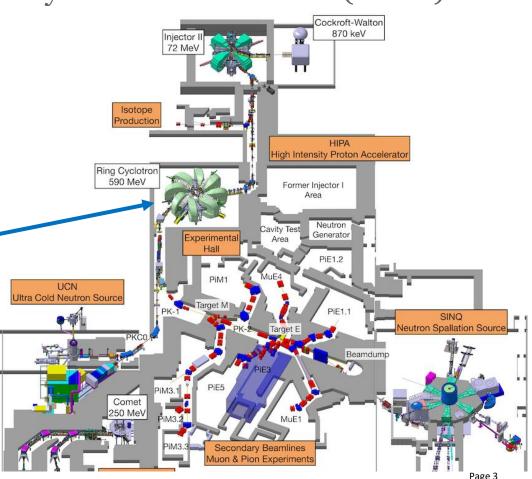
M. I. Besana, E. Hohmann, M. Sapinski, J. Snuverink, D. Werthmüller :: Paul Scherrer Institute

INVESTIGATION OF LONG RADIAL PROBE ACTIVATION IN THE PSI MAIN RING CYCLOTRON

23rd International Conference on Cyclotrons and their Applications, 07/12/2022, Beijing, China

Outline

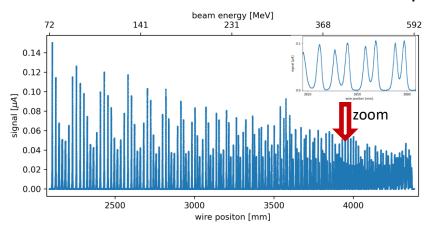
- Main Ring Cyclotron at the HIPA facility
- The Long Radial Probe (RRL) and the measured residual dose hot spot
- Monte Carlo simulations
- Spectra measurements
- Simulations/measurements comparison
 - most probable cause of dose hot spot
- Summary

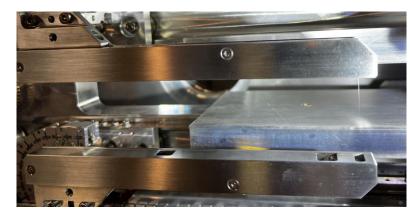


The High Intensity Proton Accelerator (HIPA)

Cyclotron facility at PSI →
 590 MeV proton beam with current up to 2.4 mA

- Three acceleration steps:
 - Final acceleration in the large 8-sector RingCyclotron


More information in the talk: "IMPACT: A Substantial Upgrade to the HIPA Infrastructure at Paul Scherrer Institute" from D. Kiselev (MOB02)



Long Radial Probe (RRL)

- Measures the beam profile of all (approx. 180) orbits
- Done by moving ϕ =30 μ m carbon fibers through the radius of the machine (2 to 4.5 m) and registering secondary electrons
- Wire is streched between two arms of a fork
- The arms move synchronously along supporting structures which limit the machine aperture

Long Radial Probe (RRL)

- After the first month of operation a hotspot was detected (>1mSv/h)
- Hotspot position corresponds to beam energy 150 MeV < E < 180 MeV
- Measurement with Al2O3:C dosimeters inserted into gap between supporting structures revealed that upper structure is 4x

more activated than bottom

Activation Simulations Strategy

Established procedure for activation calculations at PSI

=

coupling of the transport code MCNP and the nuclide inventory code FISPACT

MCNP simulations:

particles are transported from the source points to the regions of interest

FISPACT inventory calculations:

time-dependent growth and decay of all relevant radionuclides at any time instance

Activation Simulations Strategy

Established procedure for activation calculations at PSI

coupling of the transport code MCNP and the nuclide inventory code FISPACT

MCNP simulations:

particles are transported from the source points to the regions of interest

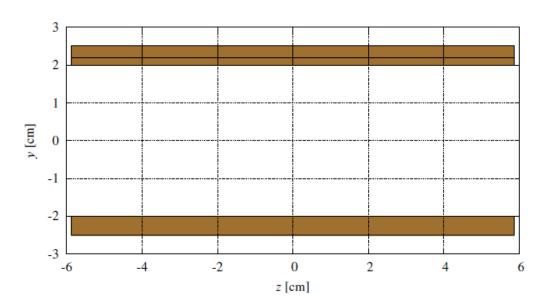
FISPACT inventory calculations:

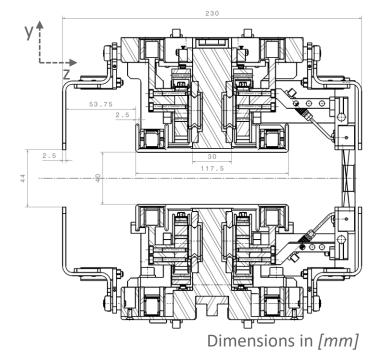
time-dependent growth and decay of all relevant radionuclides at any time instance

Results:

- nuclide inventory
- expected activity
- residual dose

for each nuclide


- spectrum and flux rate of the emitted gamma rays
- at different locations and different time instances



RRL Model in MCNP

- The RRL device is modeled as 2 blocks Aluminum-Magnesium alloy
 - 92% Aluminum
 - 4.9% Magnesium
 - 1% Manganese
 - 0.4% Silicon & Iron

- 0.25% Chromium & Zinc
- 0.1% Titanium
- 0.1% Copper
- + trace elements

- $-\Delta y = 4 \text{ cm}$
- 11.75 cm in the beam direction (z)
- 0.5 cm in the vertical direction (y)
- 1 m in the radial direction (x)

Source Term

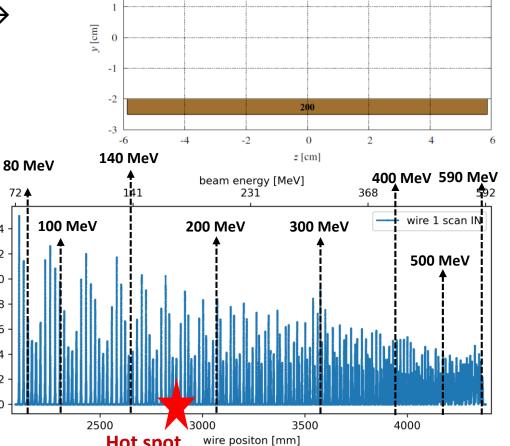
lost protons

0.14 0.12

0.10

0.04 0.02 -0.00

signal [µA] 0.08


100

Hot spot

- Beam losses at the RRL not known \rightarrow assumptions for the simulations:
 - lost protons moving along z-axis, impacting on the RRL upper part

 12 simulations with different beam energies:

10 MeV	140 MeV
20 MeV	200 MeV
40 MeV	300 MeV
60 MeV	400 MeV
80 MeV	500 MeV
100 MeV	590 MeV

113

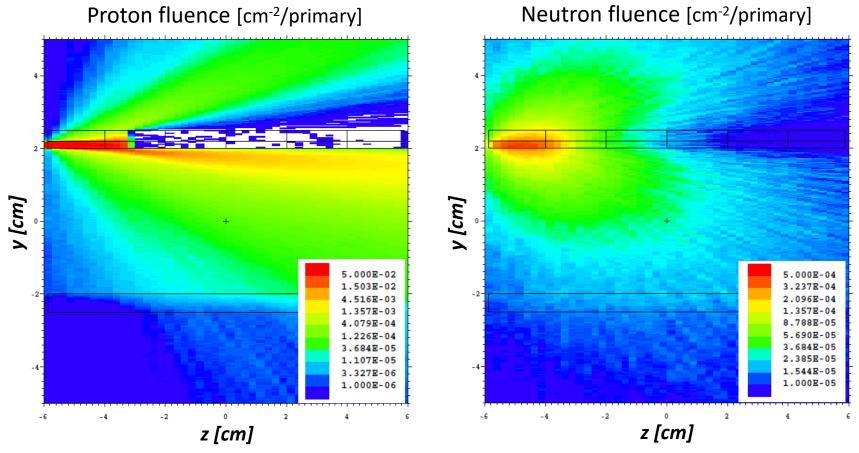
103

112

102

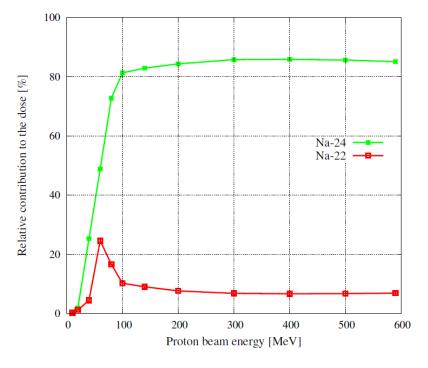
1**0**1

114


104

105

Page 9


MCNP Results: 80 MeV Beam

FISPACT Calculations

- Operation history:
 - 19 days irradiation
 - 36 hours of cooling → hot spot identified
 - 29 hours of cooling
 - 25 days irradiation
 - 12 hours cooling → Gamma spectra measurement

- Highest activation predicted where the beam impacts [cell 100]
 - $-E_{beam}$ < 60 MeV: large contribution to the residual dose from V-48, Co-56 and Mn-52
 - $-E_{\text{heam}} \ge 60 \text{ MeV: } > 75\% \text{ of the dose from Na-22 and Na-24}$
 - E_{beam} ≥ 80 MeV: >80% from Na-22 and Na-24 \rightarrow dominated by Na-24

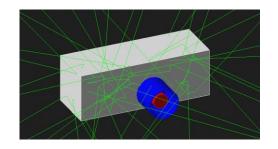
Gamma Spectroscopy (G-Spec)

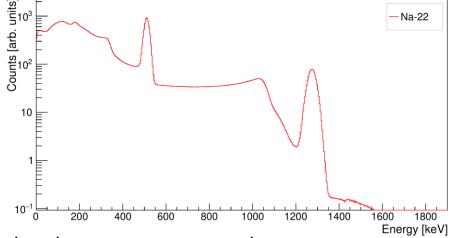
Goals

- → Determine nuclide contributions in activated area
- → Estimate proton beam energy

Measurement

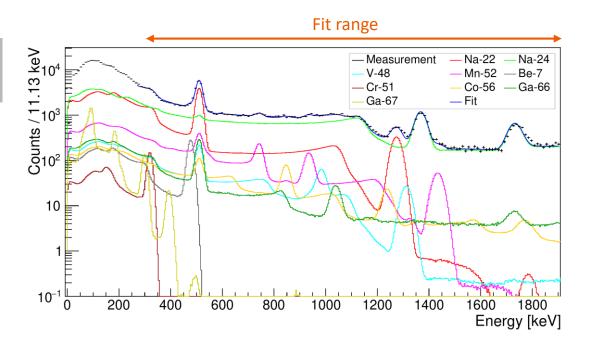
- ELSE Nuclear B-RAD: LaBr₃ handheld spectrometer
- Energy resolution: 3.3% (FWHM) at 662 keV




G-Spec: Simulation of Detector Spectra

Detector simulation

- Simplistic Geant4 model
- Radioactive decays of key nuclides
- Deposited energy folded with detector resolution
- Obtain spectral distributions of key nuclides $s'_i(E)$

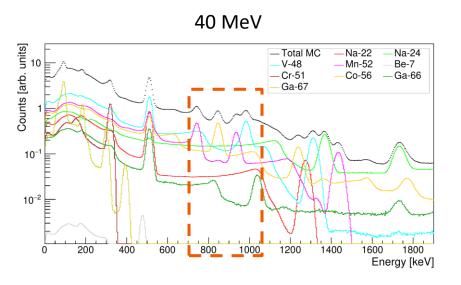


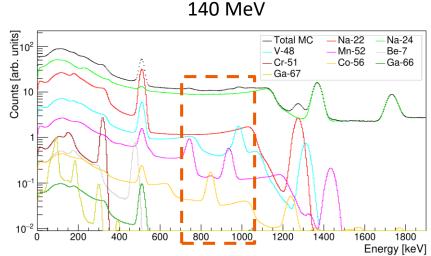
 \rightarrow Fit sum S(E) of simulated spectra to measured spectrum

G-Spec: Fitting the Spectrum

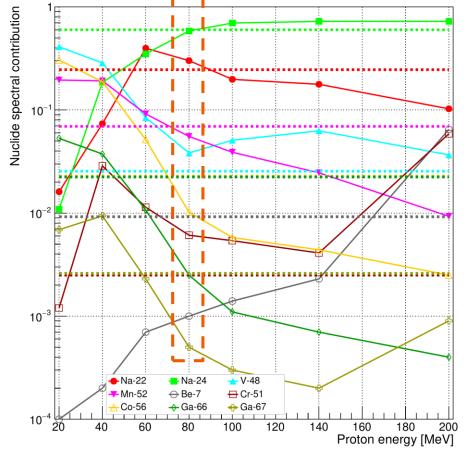
→ Key nuclides identified from MCNP/FISPACT calculation

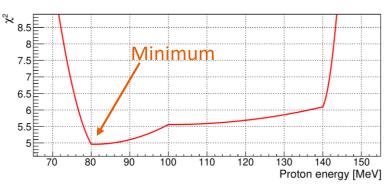
$$\rightarrow$$
 Fit ansatz: $S(E) = \sum_{Nuclide \ i} c_i \cdot s'_i(E)$


Key nuclide results


Nuclide	T _{1/2}	c _i [%]
Na-22	2.6 y	24.6
Na-24	15.0 h	60.0
V-48	16.0 d	2.6
Mn-52	5.6 d	6.9
Be-7	53.2 d	0.9
Cr-51	27.7 d	0.3
Co-56	77.2 d	2.3
Ga-66	9.5 h	2.2
Ga-67	3.3 d	0.3

G-Spec: Simulated Nuclide Contributions


- Characteristic gamma energy distributions for different proton energies
- Example: Region [700, 1000] keV for 40 and 140 MeV proton beam energies

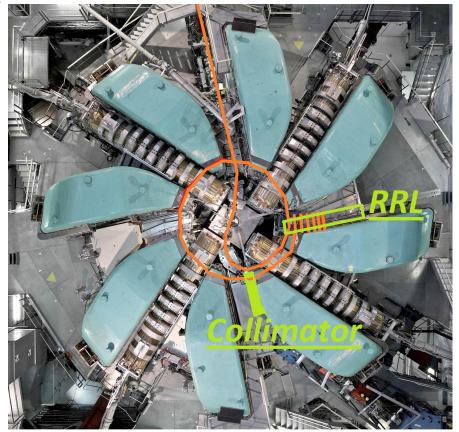

G-Spec: Estimation of Proton Energy

- Compare c_i from calculation (curves) at different proton energies with c_i from measurement fit (horizontal lines)
- Calculate

$$\chi^{2} = \sum_{Nuclide i} \left(\frac{c_{i}(Calc) - c_{i}(Fit)}{c_{i}(Fit)} \right)^{2}$$

→ Estimated proton energy: 80 MeV

Page 16



Cause of the Hot Spot

- Simulations measurements
 comparison → energy of lost protons
 = 80 MeV
- Proton energy at the position of the hot spot 150 MeV < E < 180 MeV

Most probable cause of dose hot spot
= protons scattered on the upstream
collimator

Summary

Activation hot spot in the RRL investigated with measurements and Monte Carlo simulations

- Estimated proton energy is 80 MeV
 - activation from protons scattering at the collimator
- Most of the activation comes from relatively fast decaying radioisotopes (Na-24, T_{1/2} = 15 hours)
 - the residual dose drops quickly during shutdowns

Summary

Activation hot spot in the RRL investigated with measurements and Monte Carlo simulations

- Estimated proton energy is 80 MeV
 - activation from protons scattering at the collimator
- Most of the activation comes from relatively fast decaying radioisotopes (Na-24, T_{1/2} = 15 hours)
 - the residual dose drops quickly during shutdowns

Thanks for your attention

Wir schaffen Wissen – heute für morgen

My thanks go to

- L. Bossin
- R. Dölling
- M. Hauenstein
- S. Lindner
- D. Reggiani
- M. Rohrer
- E. Yukihara
- PSI operator team

Activation Simulations Strategy

Coupling of MCNP6.2 Monte Carlo simulations with nuclide inventory code FISPACT

Inputs for MCNP:

- model of the geometry
 - small cells to study the activation at different positions
- material composition
- source term

Residual

dose map

physics models and data libraries

MCNP simulation 1:

particles (protons, neutrons, photons, pions, ...) are transported from the loss points to the

regions of interest

MCNP output:

- neutron fluxes (E< 20 MeV)
- residual nuclei production rates calculated for or each cell

Activation script

MCNP simulation 2:

the emitted photons are used as source term for a second MCNP

simulation

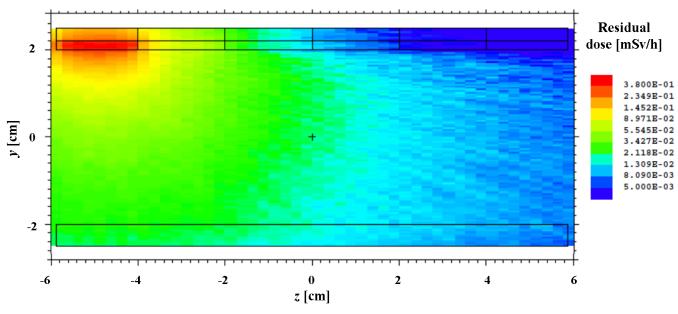
Gamma script

FISPACT calculations:

for each cell and at each time step different quantities are calculated:

- nuclide inventory
- relative contribution of the different nuclides to activity and residual dose
- spectrum and flux rate of the emitted gamma rays

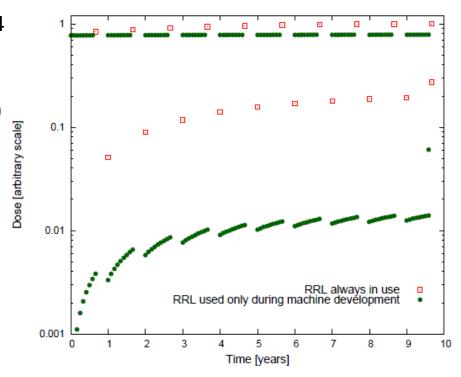
Inputs for FISPACT:


- spectra and production rates from MCNP
- operation history

Page 21

Residual Dose Map

• Residual dose map at the time of the first measurement for beam energy of 80 MeV:



- the dose value depends on assumptions on
 - beam distribution
 - lost current = 1 nA

Long Term Activation

- Most of activation from short living Na-24
 - the residual dose drops quickly
- Time evolution of residual dose rate in 10 years of operation:
 - when RRL device always intercepting the beam
 - when RRL device irradiated only 2 days per month

- Ratio (Dose_{In}/ Dose_{Out}) after 10 hours of cooling time is ~4.5
 - motorization of the probe in the next winter shutdown