Commissioning of the Sumitomo superconducting AVF cyclotron SC230

CYC2022

Y. Ebara[†], H. Tsutsui, S. Nakajima, J. Yoshida, T. Tsurudome, T. Miyashita and Y. Kumata

Sumitomo Heavy Industries, Ltd.

Sumitomo Heavy Industries, Ltd.

Accelerators

Superconducting magnets

- Accelerator manufacturing for 50 years
 - 1972- Research accelerator
 - 1981- PET cyclotron
 - 1988- Injector for heavy ion radiotherapy
 - 1996- Proton therapy system
 - 2009- BNCT system

K140 AVF cyclotron (RCNP, Osaka Univ.)

PET

Linac for heavy ion radiotherapy

Radionuclide therapy

Proton therapy

Introduction

Proton therapy, PT system

>SC230 : Sumitomo superconducting AVF cyclotron

- Concepts of SC230
- Fabricating of components

Commissioning

- > Central region, Isochronous region, Extraction region
- Beam status

Conclusion

QOL ; Quality Of Life

• PT is a cancer treatment that maintains the patient's QOL

Recently, PT has gained prevalence in cancer treatment.

The large device size limits its use in hospitals. Manufacturers have been miniaturized components in recent years.

WEBO04 Y. Ebara

Commercial SC cyclotrons for PT

Commercial superconducting(SC) cyclotrons for PT

• A high field by a SC magnet makes the accelerator compact.

Commercial SC accelerators for PT have successfully developed.

• SC230 : Superconducting AVF cyclotron for PT

Parameters	P235	SC230	Ratio
Weight	220 t	65 t	× 0.3
Power consumption	330 kW	< 200 kW	× 0.6
Maximum beam current	300 nA	1000 nA	× 3.3

SC230 has the characteristics of "Compact size", "Energy saving", "High beam current" WEBO04 Y. Ebara

Design of SC230

H. Tsutsui, et al. (2013)

Parameters	Specifications		
Туре	AVF cyclotron		
Particle species	Proton		
Beam energy	233 - 238 MeV (Fixed)		
Maximum beam current	1000 nA		
Beam structure	CW		
Extraction radius	0.6 m		
Yalva siza	Diameter: 2.8m		
TOKE SIZE	Hight: 1.7 m		
Yoke weight	65 t		
RF frequency	95.3 MHz (h = 2)		
Dee voltage	50 kV (Inside)		
Dee voitage	75 kV (Outside)		
Number of dees	2		
RF power	< 70 kW		
Total power consumption	< 200 kW		

•4 sectors

with large spiral angles of max. \sim 70 degrees. with small hill gap of min. \pm 6mm

$$v_z^2 \simeq -\frac{r}{B_z} \left(\frac{\partial r}{\partial B_z}\right) + F^2 (1 + 2\tan^2 \varepsilon), \quad F^2 = \frac{(B_h - \bar{B})(\bar{B} - B_v)}{\bar{B}^2}$$

Aiming to realize these concepts, the design and fabrication of the components proceeded.

WEBO04 Y. Ebara

Design of SC230

H. Tsutsui, et al. (2013)

Parameters	Specifications		
Туре	AVF cyclotron		
Particle species	Proton		
Beam energy	233 - 238 MeV (Fixed)		
Maximum beam current	1000 nA		
Beam structure	CW		
Extraction radius	0.6 m		
Valva siza	Diameter: 2.8m		
TOKE SIZE	Hight: 1.7 m		
Yoke weight	65 t		
RF frequency	95.3 MHz (h = 2)		
Dee veltere	50 kV (Inside)		
Dee voltage	75 kV (Outside)		
Number of dees	2		
RF power	< 70 kW		
Total power consumption	< 200 kW		

RF cavities

with only two dee with low dee voltage of 50-75 kV

•Beam extraction using the precessional extraction method (using resonance of $v_r = 1$)

Aiming to realize these concepts, the design and fabrication of the components proceeded.

J. Yoshida, et al. (2019)

Cryogen-free NbTi superconducting magnet

using conduction cooling method by four 4K-GM cryocoolers

A SC magnet with high safety and maintainability has been developed.

Fabricating of components

Y. Ebara, et al. (2020)

Mapping and field adjustment

Parameters	Specifications
Sensor type	Hall probes
Number of sensors	6
Type of stages	Linier and rotate stages
Material of stage	CFRP
Actuators	USMs
Measurement points	~52 000
Measurement area	φ1,260 mm
Measurement time	2.5 hours
Adjustment methods	Pole machining Shimming Coil centering

Isochronous field

Required magnetic field was formed by mapping and adjustment.

• Other components (Ion source, RF cavity, extraction components, etc.)

Photo of the inside of the SC230

Parameters	Specifications	
Туре	Hot-cathode PIG	
RF cavity	2	
RF frequency	95.2 MHz (h=2)	
Dee voltage	50 kV(Inside) 75 kV(Outside)	
RF power consumption	<70 kW	
Extraction components	EHCs, ESD, MCs	
Extraction method	Precessional extraction	
ESD electric field	1×10 ⁷ V/m	
Pressure	< 1×10 ⁻² Pa	

Each components were designed and fabricated under material and space constraints. The required performances were Achieved.

Commissioning

- New test site was constructed.
- Transportation and assembly of SC230 were completed in 2020.
- Commissioning was started at the end of 2020.

Commissioning

- New test site was constructed.
- Transportation and assembly of SC230 were completed in 2020.
- Commissioning was started at the end of 2020.

During commissioning, probes installed at each radius were used to check beam conditions, and parameters were adjusted.

Commissioning : "Central region"

Parameters of the ion source were adjusted.

Commissioning : "Central region"

Beam mark on the center electrode

Calculated trajectory of the central region

Parameters of the ion source were adjusted.

Commissioning : "Isochronous region"

Fortunately, it was confirmed to pass through the isochronous region without any adjustment.

 B_{z1} tuning

Coil centering

The beam was extracted by adjusting Coil position, CHCs, EHCs, Deflector etc.

WEBO04 Y. Ebara

The beam was extracted by adjusting Coil position, CHCs, EHCs, Deflector etc.

WEBO04 Y. Ebara

Commissioning : First beam observation Sumitomo Heavy Industries, Ltd.

• First beam was observed in Jul. 2021.

Commissioning

• A parameter set that satisfies the required beam was found.

Parameters	Specifications	Pass/Fail
Max. beam current	1000 nA	✓ Pass
Beam energy	233-238 MeV	✓ Pass
Energy repeatability	< 0.2 MeV	✓ Pass
Extraction efficiency	≥ 60%	✓ Pass
Min. controllable beam current	< 1 nA	✓ Pass
Ripple current	≤ 2 % (1σ)	✓ Pass
Beam current stability	≤ 1 % (1σ) for 2 min.	✓ Pass
Beam responsivity	≤ 50 μsec	✓ Pass
Beam position stability	< ±0.1 mm for 2 min.	√ Pass
RMS emittance	< 2.2 μm (x) < 1.4 μm (y)	✓ Pass
Total power consumption in operation	< 200 kW	✓ Pass

A beam that satisfies all required specifications was obtained.

> Commissioning completed in Nov. 2021.

Parameters	P235	SC230	Ratio	Pass/Fail
Weight	220 t	65 t	× 0.3	✓ Pass
Power consumption	330 kW	< 200 kW	× 0.6	✓ Pass
Maximum beam current	300 nA	1000 nA	× 3.3	✓ Pass

> Commissioning completed in Nov. 2021.

Conclusion

- SC230 is a superconducting AVF cyclotron, which features the compact size weighing 65 tons, high current beam of 1µA, low energy consumption less than 200 kW.
- \blacktriangleright It was developed and the commissioning was completed in 2021.

Next-generation proton beam therapy system using SC230

SC AVF cyclotron SC230 for PT has been developed. It is expected to contribute to PT in the near future.

Thank you

