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“Isochronous” Cyclotrons

Fundamental principle: length (L = 2πR) of a closed orbit for a particle of a
particular energy (γmc2) is strictly proportional to particle speed (βc) at that
energy:

R = βR∞. (1)

The average magnetic field drops out of this requirement:

〈B〉 =
∮
Bds
2πR

=

∮
Bρ dθ
2πR

=
Bρ

βR∞
:=

βγBcR∞
βR∞

= γBc. (2)

For constant field then we know the logarithmic field gradient (sometimes called
index):

k =
R

B

dB
dR

=
β

γ

dγ
dβ

= β2γ2. (3)
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Tunes for simple case

Radial:
ν2x = 1 + k = 1 + β2γ2 = γ2 (4)

(see [Symon et al., 1956] for tune as function of k), or

νx = γ (5)

Vertical:
ν2y = −k = −β2γ2 (6)

or
νy = βγi (7)

which is imaginary and we need strong focusing to overcome this gradient effect
that is required by isochronism.
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Traditionally...

Add flutter (‘Thomas’ focusing [Thomas, 1938]) and spiral angle strong focusing
(‘Kerst’ focusing [Kerst et al., 1954]) to compensate for the unfortunate required
gradient.

Traditionally, just enough was added to make the tune νy real and preferably
constant. Just enough meant little change of the radial tune away from νx = γ.
Tune variation means betatron resonances crossed.

But! Can do better than that...

Cyclotron design can successfully traverse low order resonances if energy gain
sufficiently high, but if tunes are fixed machine is less sensitive; can be built with
wider error tolerance on magnetic field.
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Proposed 2 GeV cyclotron (1983) never built

Proton cyclotron for 2 GeV, injecting at
590 MeV, devised by Werner
Joho[Joho, 1983]. The magnets (light
blue and pink) are similar to those that
exist for the PSI 590 MeV cyclotron,
which currently produces 2.4 mA
protons.
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Betatron Resonances: Tune Diagram

A sampling of machines’ tunes displayed
on a tune diagram. PSI 590 MeV ring
cyclotron, the TRIUMF 500 MeV
cyclotron, MSU’s old 50 MeV proton
cyclotron, Proposed TR100, PSI Injector
2, ASTOR. Both operating high energy
machines (and RIKEN SRC?) traverse
the νx = 3

2 resonance. The MSU and
PSI machines traverse the Walkinshaw
resonance νx = 2νy. ASTOR would
cross νx = 2, 52 , 3.
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Proposed 2 GeV cyclotron (2019) not built yet

Proposed China Institute of Atomic Energy 2 GeV cyclotron [Zhang et al., 2019]. 8 / 35



Proposed 2 GeV Cyclotron (2019) [Zhang et al., 2019]

Horizontal tune crosses integers in all the high-energy cyclotrons that have been
proposed so far. Avoiding it comes at cost of compromised isochronism. 9 / 35



Cyclotron Design: Conventional Approach
Start from a magnet geometry, calculate the field distribution, track particles to
find the closed orbit, compute the isochronous field error, the tunes, and iterate.

It can take days to produce one isochronous field distribution in this way: ability to
explore is limited. Figure from Lige Zhang, TRIUMF.
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Cyclotron Design: Conventional Approach
Start from a magnet geometry, calculate the field distribution, track particles to
find the closed orbit, compute the isochronous field error, the tunes, and iterate.
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It can take days to produce one isochronous field distribution in this way: ability to
explore is limited. Figure from Lige Zhang, TRIUMF.
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Reversed Approach: Starting from the Geometry of the Orbits

Synchrotrons are designed from the orbits why not cyclotrons? The difference is
that synchrotrons only need one orbit. Cyclotrons need infinitely many!
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Ingredients
Circular orbit: r(θ) = a
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Ingredients
General closed orbit : r(θ) = r(θ + 2π/N) with N ∈ N∗
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Ingredients
General closed orbit (Fourier series): r(θ) =

∑∞
j=0Cj cos(j(θ + φj))
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Ingredients
Continuum of closed orbits: r(a, θ) = a

∑∞
j=0Cj(a) cos(j(θ + φj(a)))

a is the average radius of the orbit. For closed orbit to never cross: ∂r
∂a > 0
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Ingredients
Isochronous condition (cyclotron!):

β(a) =
L(a)
2πR∞

,

where R∞ is a constant, β(a) is the particle velocity and L(a) is the
corresponding orbit circumference:

L(a) =
∫ 2π

0

ds
dθ

dθ ,

ds
dθ

=

√
r2 +

(
∂r

∂θ

)2

.
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Objective

Given r(a, θ) + the isochronous condition, calculate the transverse tunes:

νx(a)

νy(a)
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Frenet-Serret coordinate system (x, y, s)
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Linear Motion around Closed orbit [Courant and Snyder, 1958]
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Linear Motion around Closed orbit [Courant and Snyder, 1958]

. . .
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Linear Transverse Motion Hamiltonian in Cyclotrons

H =
x2

2

1− n
ρ2

+
y2

2

n

ρ2
+
p2x
2

+
p2y
2
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ρ, and n from geometry

ρ(a, θ) =

(
r2 +

(
∂r
∂θ

)2)3/2
r2 + 2

(
∂r
∂θ

)2 − r ∂2r
∂θ2

Remember:

r(a, θ) = a

∞∑
j=0

Cj(a) cos(j(θ + φj(a)))
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ρ and n from geometry

n can also be calculated entirely from
the geometry of the orbits, but that is
more tedious to demonstrate, for details
see [Planche, 2019, Planche, 2022]

The local curvature of the orbit is given by the standard formula for polar coordinates:

1
d
=

A2 + 2
(
mA
m\

)2
− A m2A

m\2(
A2 +

(
mA
m\

)2
)3/2 . (2.13)

The field index = is obtained from:

= = − d
�0

m�

mG
=
md

mG
− d

VW

mVW

mG
(2.14)

where VW =
V√

1−V2
and V is given by Eq. (2.10). As shown in Ref. [11] the chain rule and the

Figure 1. Relations between infinitesimal quantities around the closed orbit (the thick blue line); d\ and d0
represent infinitesimal variations in \ and 0 respectively.

relations between infinitesimal quantities illustrated in Fig. 3 yields:

md

mG
=
md

m0

m0

mG
+ md
m\

m\

mG
=

1
A

(
md

m0

dB
d\
mA
m0

− md
m\

mA
m\

dB
d\

)
, (2.15)

where dB
d\ is given by Eq. (2.12). If one choosesR∞ to be the unit of length, the numerical integration

is done entirely from the knowledge of A (0, \) and its partial derivatives. And since the transverse
tunes are unitless numbers, their values are not affected by the choice of the unit of length, i.e.
independent of R∞. The transverse tunes derive entirely from the shape of the orbits, and from
absolutely nothing else.

Note that, to be able to calculate tunes in this way, the function A (0, \) must be sufficiently
smooth for the following partial derivatives: mA

m\
, mA

m2 \2 ,
m3A
m\3 ,

mA
m0
, m

2A
m0\

, m
3A

m0\2 to be defined.

2.3 Corresponding Isochronous Field Map

So far we have only needed the knowledge of the shape A (0, \) of the closed orbits to calculate
tunes. The question that comes to mind is: what magnetic field distribution produces these closed
orbits? The answer will depend on the choice of the particle mass < and charge @, and the scale of

– 4 –
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Linear Transverse Motion Hamiltonian in Cyclotrons
What is important is that we now know the value of n and ρ along any orbit,
entirely from geometry. We can calculate betatron tunes directly integrating the
equations of motion from:

H =
x2

2

1− n
ρ2

+
y2

2

n

ρ2
+
p2x
2

+
p2y
2

using for instance Meade’s algorithm [Meade, 1971].
To check the result with a more conventional tracking code one needs to produce
a field map. Remembering Bρ = γmv/q:

B(r, θ) =
β(a)√

1− β2(a)
m

qρ(a, θ)
.
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Flat Tunes Compact Cyclotron

r(a, θ) = a
(
1 + C(a) cos

(
N(θ − φ(a))

))

One now needs to find a way to define the two functions C(a) and φ(a) using a
finite – and hopefully small – number of degrees of freedom. We do this by
constraining the values of C(a) and φ(a) for a few orbits, and we use a cubic
spline interpolation for any intermediate value of a.
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Flat Tunes Compact Cyclotron
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Quiz: So what did we do that was different? Large flutter at centre!
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Flat Tunes Compact Cyclotron
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Central Orbit: Circular!

Courtesy of Wiel Kleeven, IBA.

Not quite constant because: Central orbit is circular!
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Can one design a magnet to produce such a field?
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Can one design a magnet to produce such a field?

View of the magnet steel (green) and coils (red) as implemented in the 3D model.
Note that only 1/6 of the magnet is shown here (symmetry).

Notice the dimple.
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Can one design a magnet to produce such a field?
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Difference between the desired field distribution, and the result from the
3-dimensional magnet model (finite element code: OPERA).
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Tune Variation from 3D Magnet Model

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 0  50  100  150  200

Energy/MeV (H2
+
)

νr
νz

1000∆ω/ω 

29 / 35



Tune Variation from 3D Magnet Model
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What about a high-energy cylotron?

Using the same parameters as for the CIAE 2 GeV proton cyclotron design
showed earlier:
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Constant-tune 2 GeV Cyclotron

It took a rather more complex parametrization of the orbits, especially to get the
straight sections right. Need at least 5 Fourier harmonics to have “field-free”
regions. In the end it uses 25 free parameters. It took many iterations, and on the
order of half a day on Thomas’ laptop to converge to this:
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Constant-tune 2 GeV Cyclotron B(r, θ)
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What features do you notice?
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Constant-tune 2 GeV Cyclotron
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Constant-tune 2 GeV Cyclotron
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Thank You

Thank you for your attention
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